Relativistic Laguerre Polynomials and Splash Pulses
نویسنده
چکیده
New solutions of the homogeneous wave equation of the type usually referred to as relatively undistorted waves are presented. Such solutions relate to the so-called “splash modes”, from which indeed they can be generated by applying the Laguerre polynomial operator. Accordingly, the solutions here presented resort to the relativistic Laguerre polynomials — introduced about one decade ago within a purely mathematical context — which in fact appear as modulating factor of the basic “splash mode” waveform. Similar solutions of the homogeneous spinor wave equation are also suggested.
منابع مشابه
The Relativistic Hermite Polynomials and the Wave Equation
Solutions of the homogeneous 2D scalar wave equation of a type reminiscent of the “splash pulse” waveform are investigated in some detail. In particular, it is shown that the “higher-order” solutions relative to a given “fundamental” one, from which they are obtained through a definite “generation scheme”, come to involve the relativistic Hermite polynomials. This parallels the results of a pre...
متن کاملApplication of Laguerre Polynomials for Solving Infinite Boundary Integro-Differential Equations
In this study, an efficient method is presented for solving infinite boundary integro-differential equations (IBI-DE) of the second kind with degenerate kernel in terms of Laguerre polynomials. Properties of these polynomials and operational matrix of integration are first presented. These properties are then used to transform the integral equation to a matrix equation which corresponds t...
متن کاملThe Operational matrices with respect to generalized Laguerre polynomials and their applications in solving linear dierential equations with variable coecients
In this paper, a new and ecient approach based on operational matrices with respect to the gener-alized Laguerre polynomials for numerical approximation of the linear ordinary dierential equations(ODEs) with variable coecients is introduced. Explicit formulae which express the generalized La-guerre expansion coecients for the moments of the derivatives of any dierentiable function in termsof th...
متن کاملNumerical solution of Fredholm integral-differential equations on unbounded domain
In this study, a new and efficient approach is presented for numerical solution of Fredholm integro-differential equations (FIDEs) of the second kind on unbounded domain with degenerate kernel based on operational matrices with respect to generalized Laguerre polynomials(GLPs). Properties of these polynomials and operational matrices of integration, differentiation are introduced and are ultili...
متن کاملExtended Jacobi and Laguerre Functions and their Applications
The aim of this paper is to introduce two new extensions of the Jacobi and Laguerre polynomials as the eigenfunctions of two non-classical Sturm-Liouville problems. We prove some important properties of these operators such as: These sets of functions are orthogonal with respect to a positive de nite inner product de ned over the compact intervals [-1, 1] and [0,1), respectively and also th...
متن کامل